Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The subspecies rank has been widely applied by taxonomists to capture infraspecific variation within the Linnaean classification system. Many subspecies described throughout the 20th century were recognised largely based on perceived variation in single morphological characters yet have since been found not to correspond to separately evolving population lineages, thus requiring synonymy or elevation to full species under lineage-based views of species. These modern lineage-based taxonomic resolutions have resulted from a combination of new molecular genetic techniques, improved geographical sampling of specimens, and more sophisticated analyses of morphological variation (e.g., statistical assessments rather than solely univariate descriptive ones). Here, we revisit the current taxonomic arrangement of species-level and subspecific taxa in the Lerista microtis (Gray) group, which is distributed along a narrow ~2000 km strip on the southern coast of Australia. From specimens of the L. microtis group, an additional species (Lerista arenicola) and two additional subspecies (L. m. intermedia and L. m. schwaneri) were described. We collected data on mensural, meristic, and colour pattern characters to explore morpho-spatial relationships among these taxa. Although our morphological analyses revealed some distinctiveness among specimens from locations assigned to each taxon, this variation is continuous along Australia’s southern coastline, assuming the form of a geographic cline rather than discrete forms. For many characters, however, spatial patterns were inconsistent with the original descriptions, particularly of the subspecies. Moreover, analysis of genome wide restriction-associated DNA loci revealed multiple instances of paraphyly among taxa, with phylogenetic clustering of specimens assigned to distinct species and subspecies. These emerging patterns provide no support for L. arenicola as a species evolving separately from L. microtis. Additionally, our findings challenge the presumed distinctiveness and coherence of the three subspecies of L. microtis. We thus synonymise L. arenicola and the L. microtis subspecies with L. microtis and provide a redescription of a single yet morphologically variable species—an arrangement that best reflects evolutionary history and the continuous nature of morphological variation across space.more » « less
-
Abstract Many subspecies were described to capture phenotypic variation in wide-ranging taxa, with some later being found to correspond to divergent genetic lineages. We investigate whether currently recognized subspecies correspond to distinctive and coherent evolutionary lineages in the widespread Australian lizard Ctenotus pantherinus based on morphological, mitochondrial and genome-wide nuclear variation. We find weak and inconsistent correspondence between morphological patterns and the presumed subspecies ranges, with character polymorphism within regions and broad morphological overlap across regions. Phylogenetic analyses suggest paraphyly of populations assignable to each subspecies, mitonuclear discordance and little congruence between subspecies ranges and the distribution of inferred clades. Genotypic clustering supports admixture across regions. These results undermine the presumed phenotypic and genotypic coherence and distinctiveness of C. pantherinus subspecies. Based on our findings, we comment on the operational and conceptual shortcomings of morphologically defined subspecies and discuss practical challenges in applying the general notion of subspecies as incompletely separated population lineages. We conclude by highlighting a historical asymmetry that has implications for ecology, evolution and conservation: subspecies proposed in the past are difficult to falsify even in the face of new data that challenge their coherence and distinctiveness, whereas modern researchers appear hesitant to propose new subspecies.more » « less
An official website of the United States government
